UE23CS251A : SoC Design and Computer Architecture (4-0-2-4-5)

of Sessions: 120

	Unit #			
Class #	Chapter Title/Reference Literature	Topics to be Covered	% of Portio	n covered
			% of Syllabus	Cumulat ive %
1	T1: Chapter 2 Combinational Logic	Boolean Functions	25%	25%
2		K-Maps		
3	Chapter 5 Digital Building	K-Maps		
4	Blocks: 5.2.1, 5.2.2	HDL and Verilog Basics		
5	Chapter 3 Sequential	HDL and Verilog Basics		
6	2 2 (evoluting 3 2 7)	Combinatorial Logic Design- Adder		
7	3.3 (excluding 3.3.1,	A1: Verilog Practice Programs		
8	3.3.3)	L1: Basic Gates		
9	3.4 (excluding 3.4.4)	L1: Adder (One bit & N-bit)		
10	3.4.1, examples 3.6,	Combinatorial Logic Design- Subtracter		
11	– 3.7, 3.9 – Handout : Link 1	Combinatorial Logic Design- MUX/Demux		
12		Combinatorial Logic Design- MUX/Demux		
13		Combinatorial Logic Design- Shifters		
14	-	Sequential Logic Design- Latches & Flip Flop		
15		Sequential Logic Design- Latches & Flip Flop		
16		A2: Write a Verilog code and test bench for Flip-Flop, Synchronous Register		
17		L2: Design of an ALU		
18		L2: Design of an ALU		
19		Combinational Logic Design Examples		
20		Combinational Logic Design Examples		
21		Design of Finite State Machine		
22		Design of Finite State Machine		
23		Design of Finite State Machine		
24		Design of Finite State Machine -Counters		
25		A3: Write a Verilog code and test bench for Counters		
26		L2: Design of an ALU		
27		L2: Design of an ALU		
28		Design of Finite State Machine-Counters		
29		Design of Finite State Machine-Counters		

30		Memory Arrays		
31		Adder/Multiplier (Shift Add & Wallace Tree)		
32		Adder/Multiplier (Shift Add & Wallace Tree)	-	
33		Adder/Multiplier (Shift Add & Wallace Tree)	-	
34		A4: Write a Verilog code and test bench for Prefix adders.	-	
35		L3: Design of a Register File.		
36		L3: Design of a Register File.		
37		Adder/Multiplier (Shift Add & Wallace Tree)		
38		Divider Circuit		
39		Floating Point Units	-	
40	R3: Chapter 6 Arithmetic	Assembly Language		
41	Handout	Assembly Language	-	
42	Link 2 29.2.3, 29.3.2	Machine Language & Addressing Modes	-	
43	Chapter 5 Digital Building	Machine Language & Addressing Modes	-	
44	Blocks	Machine Language & Addressing Modes	-	
45	 5.3.2 (excluding subsections Rounding and Floating-Point Addition) Chapter 6 Architecture 6.1, 6.2 6.3, 6.4.1 	A5: Write a Verilog code and test bench for Multiplier or Divider circuit.	-	
46		L4: Design of Program Counter and Data Path Design	25%	50%
47		L4: Design of Program Counter and Data Path Design	_	
48		Single Cycle Processor Data Path and Control		
49	6.4.2, 6.4.3 (exclude	Single Cycle Processor Data Path and Control		
50	6 4 4 (exclude magnitude	Single Cycle Processor Data Path and Control		
51	comparison), 6.5	Multi Cycle Processor Data Path and Control		
52	Chapter 7	Multi Cycle Processor Data Path and Control		
53	Microarchitecture	Multi Cycle Processor Data Path and Control	-	
54	- /.1, /.2,/.3,/.4	Multi Cycle Processor Data Path and Control	-	
55		L5: Control Logic Design	-	
56		L5: Control Logic Design	-	
57		L6: Fetch/Decode/Execute logic implementation for ARM instruction		
58		L6: Fetch/Decode/Execute logic implementation for ARM instruction		
59		L6: Fetch/Decode/Execute logic implementation for ARM instruction		
60		L6: Fetch/Decode/Execute logic implementation for ARM instruction		
61	1.6,2.3 of R2,	RISC & CISC Instruction Set Architecture(ISA)	25%	75%
62	A-3 OT 12, pa no: 51-55 of R2	RISC & CISC Instruction Set Architecture(ISA)]	
63	Chapter 3.1 to 3.5 of T1	RISC & CISC Instruction Set Architecture(ISA)	1	

64	6.8,5.6 of T2	Addressing modes & Operands	
65	Appendix C-1, C-2,	Addressing modes & Operands	
66	Appendix B.1, B.2, B.3 of T2	A6: Implementation of ARM7TDMI-ISA to Block transfer of data items, Find sum of N data items in the memory	
67		L7: ARM Instruction Set and Sample Programs	
68		L7: ARM Instruction Set and Sample Programs	
69		Instruction Set: Encoding, Operations, Control Flow	
70		Instruction Set: Encoding, Operations, Control Flow	
71		3 and 5 stage Pipe Lining	
72		3 and 5 stage Pipe Lining	
73		Pipeline Hazards	
74		Pipeline Hazards	
75		 A7: Consider the following sequence of instructions in MIPS architecture. LDR R1, [R2,#40] ADD R2, R3, R3 ADD R1, R1, R2 STR R1, [R2,#20] a. Find all dependencies in this instruction sequence. b. Find all hazards in this instruction sequence for a five stage pipeline with and without data forwarding. c. Find whether NOPs are required to be introduced inspite of data forwarding in this instruction sequence 	
76	-	L8: ARM Instruction Set and Sample Programs	
77		L8: ARM Instruction Set and Sample Programs	
78		Stalling & Forwarding	
79		Branch Prediction	
80		Branch Prediction	
81		Cache Memory Basics	
82		Direct Mapped and Set Associatice Cache Memories	
83		Direct Mapped and Set Associatice Cache Memories	
84		Direct Mapped and Set Associatice Cache Memories	
85		Direct Mapped and Set Associatice Cache Memories	
86		 A8: Consider the following sequence of instructions in MIPS architecture. LDR R1, [R6,#40] BEQ R2, R3, LABEL2 ; BRANCH TAKEN ADD R1, R6, R4 LABEL2:BEQ R1,R2, LABEL1 ; BRANCH NOT TAKEN STR R2,[R4, #20] AND R1, R1, R4 a. Draw the pipeline execution diagram for this code, assuming there are no delay slots and that branches execute in the EX stage 	
		b. Repeat the exercise mentioned in a and draw the	

		_		
		pipeline execution diagram for this code, assuming that delay slots are used by writing a "SAFE INSTRUCTION" in the delay slot.		
87		L9: PARACHACHE Simulator & Cache Performace Optimisation		
88		L9: PARACHACHE Simulator & Cache Performace Optimisation		
89		Cache Performance (ARM & X86 Case studies)		
90		Cache Performance (ARM & X86 Case studies)		
91		Memory Hierarchy		
92		Memory Hierarchy		
93		Address Translation		
94		Address Translation		
95	-	Address Translation		
96	_	L10: Cycle Accurate Instruction Set Simulation with Pipelining		
97		L10: Cycle Accurate Instruction Set Simulation with Pipelining		
98		Interrupts and Virtual Memory		
99		Interrupts and Virtual Memory		
100		Interrupts and Virtual Memory		
101	T2: Sec 1.9 ,Sec 3.1, 4.1	Page Table andTLB	25%	100%
102	Handouts	Page Table and TLB		
103		Page Table and TLB		
104		Page Replacement policies		
105		Page Replacement policies		
106		I/O Systems		
107		Advanced Micro Architectures		
108		Advanced Micro Architectures		
109		Flynn's Taxonomy and Multicore Architectures		
110	-	Flynn's Taxonomy and Multicore Architectures		
111	1	Flynn's Taxonomy and Multicore Architectures		
112- 120		Project Work		

Tool/ Languages: ARM Simulator, Verilog IDEs, FPGA programming Tools, ARM Dev Kit and IDE's

Text Books:

1. "Digital Design and Computer Architecture - Arm Edition ", Sarah L Harris and David Money Harris, , Morgan Kaufmann, 2016

2. "Computer Architecture : A Quantitative Approach", J L Hennessey, D A Patterson, 5th Edition,

Morgan Kaufmann, 2011

References:

1. "The Definitive Guide to ARM Processors", Joseph Yiu, 2nd Edition, Newnes, 2015

2. "ARM System-on-Chip Architecture", Steve Furber, 2nd Edition, Pearson, 2015

3. Computer Organization, Carl Hamacher, SafwatZaky, ZvonkoVranesic, Fifth Edition, Mc Graw Hill, 2002

4. "Computer Organisation and Design", David A Patterson, John L Hennessey, 5th Edftion, Elesevier, 2016

5. "Computer Systems for Programmers – A Programmer's Perspective", Randal E Bryant, David R O'Hallaron, 3rd Edition, Pearson, 2019

Data Structures and its Application – UE22CS252A (5-0-2-5-5) # of Sessions: 112

	Unit #			
Class #	Chapter Title/Reference Literature	Topics to be Covered	% of Portion covered	
			% of Syllabus	Cumulative %
1		Overview of the C, Introduction to Data Structures.		
2	-	Pointers, Structures		
3		Functions & Recursion		
4		Static and Dynamic Memory Allocation		
5		Abstract Data Type (ADT), List as an ADT, List as a data structure		
6		List Implementation using Array.		
7,8		LAB-1		
9		Singly Linked List (SLL) insert operations: beginning, end		
10		SLL : insert & delete at a specified position, destroy list operation		
11	Unit 1: Linked List and Stack	SLL delete operations: beginning, end, at a specified position	25	25
12	T1/R1	SLL Operations : other operations like search operation, concatenate etc		
13		Doubly Linked List (DLL) insert operations: beginning, end, at a specified position, destroy list operation		
14		DLL delete operations: beginning, end, at a specified position, search operation		
15,16		LAB 2		
17		Ordered Double Linked List		
18		Circular Singly Linked List		
19	1	Circular Doubly Linked List		
20		Sparse matrix and its representation using Multi list, Case Study – Skip List		
21	1	Basic structure of a stack, stack using arrays		

22		Stack using linked list.		
23,24		LAB 3	-	
25		Applications of stack: Function execution, Nested functions.		
26		Applications of stack: Conversion of an expression from Infix to postfix / prefix		
27		Applications of stack: Evaluation of a postfix expression using stack		
28		Applications of stack:Parenthesis matching using stack		
29		Basics of Queue Data Structure, Linear Queue using Array.		
30	-	Queue using Linked List	-	
31,32	-	LAB-4	-	
33		Circular queue using array and linked list	-	
34		Priority queue using array		
35		Priority queue using linked list		
36		Double ended queue (Deque) using array and linked list		
37		Other Queue Operations : Stacks usig Queue, Queue using Stacks		
38		Applications of Queue: Case Study – Josephus problem		
39,40	Unit 2 – Queue	LAB 5		
41	& Binary Trees T1/R1	Binary Tree and Binary Search Tree (BST) : definition, properties	25	50
42,43		Binary Trees using Dynamic Memory Allocation.	-	
44		n-ary tree, Forest, conversion of an n-ary tree and Forest to Binary Tree		
45	-	BST using arrays		
46	-	BST using Linked List	-	
47,48		LAB 6	-	
49		BST Traversal: Inorder, preorder, postorder.		
50		Other tree operations-finding the height, depth, count no of nodes, leaf nodes		
51,52		Node deletion operation on a Binary Search Tree		
53,54		Binary Search Tree Traversals using iteration.		
56,57		LAB-7		

58,59		Revision / HALP		
60,61		Expression Tree		
62,63		Threaded Binary Tree		
64		Heap Tree and its properties		
65,66		LAB-8		
67		Heap using Array - Bottom up Heap construction		
68,69		Heap using Array – Top dowm Heap Construction		
70		Priority Queue using min and max heap		
71		Balanced Tree : Definiation, AVL Tree		
72,73		LAB 9		
74,75	Unit 3 –	Rotation in AVL Tree		
76	Trees, Basics of	Splay Tree	25	75
77	Graphs	Graphs: Introduction, properties.		
78	T1/R1	Graphs : Types og Graphs, Applications and Representation		
79		Graphs using adjacency matrix and Adjacency List		
80,81		ASSIGNMENT / Mini Project		
82		Graph Traversal Techniques – DFS & BFS with examples		
83		Depth First Search (DFS) traversal of a graph		
84		Breadth first search (BFS) traversal of a graph		
85		HALP/Revision		
87		Application of BFS and DFS: Connectivity of graph		
88		Application of BFS and DFS: finding path in a network		
89	Unit 4: Applications of	Application of BFS and DFS: To check if there exists a cycle in a given graph.		
90,91	Graph, Hashing, Trie ,Suffix Trees T1/R1	LAB 10		
92,93		Case Study: Indexing in databases (B Tree: K-way tree), Introduction, Properties	25	100
94,95		Hashing: Simple mapping, hash function, hash table		
96]	Collision handling using seperate Chaining.		
97,98]	LAB 11		
99,100		Collision handling using linear and quadratic		

	probing.	
101,102	Collision handling using double hashing and rehashing.	
103,104	Introduction to Trie trees, properties, Application.	
105,106	LAB-12	
107	Trie trees: Insert & Search, Delete	
108	Application of Trie : Display the words in a trie in lexicographic order, Prefix based search, multi pattern search	
109	Application of Trie : Word Prediction, Auto Complete Feature	
110	Suffix Tree : Introduction, Properties, Construction.	
111	Mini Project/ Assignment	
112	Revision/ HALP	

Tool/ Languages: C Programming Language

Text Book:

1. "Data Structures using C / C++", Langsum Yedidyah, Moshe J Augenstein, Aaron M Tenenbaum Pearson Education Inc, 2nd edition, 2015.

Reference Book:

1. "Data Structures and Program Design in C", Robert Kruse, Bruce Leung, C.L Tondo, Shashi Mogalla, Pearson, 2nd Edition, 2019.

Evaluation Policy

	Conducted	Scaled to
ISA -1 (Unit 1 & Unit 2)	40	20
ISA -2 (Unit 3 & Unit 4)	40	20
Experiential Learning / HALP (Assignment +Mini Project)	20	10
Lab (Total 10 Labs)	10	20
ESA	100	50
Total		120(scaled to 100)

STATISTICS FOR DATA SCIENCE (4–0–0–4)

Subject Code: UE22CS241A

No. of Hours: 84

	Chapter		% of Portion	
Class #	Title/Reference Literature	Topics to be covered	% of syllab us	Cumul ative
1.		Introduction to Data Science: Motivating Examples and Scope		
2.		Sampling: Introduction, Sample, Population		
3.		Types of population – Tangible, Conceptual. (1.1)		
4.		Sampling Methods (1.1)		
5.		Sampling Errors – Handout 1		
6.		Hands on session: Purpose and Components of Python- A quick recap,		
7.	Unit: 1	Getting and Analyzing Data: Scraping the Web (Handout 2) Hands on Session-Web Scraping with Beautiful Soup		
8.	Introduction to Data Science	Getting and Analyzing Data: Reading Files (.csv) (Handout 3) Hands on Session Reading Files with Pandas		
9.	and Data Visualization	Data Cleaning: Need for Data Cleaning, Basics of Data Cleaning.(Handout 4) Hands on Session - Data Cleaning with Pandas	25	21
10.	T1: Chapter 1 1.1-1.3	Statistics :Introduction, Types of Statistics, Summary Statistics(1.2)		
11.		Types of Data, Types of Experiments – Controlled and Observational study (1.1)		
12.		Summary Statistics (cont.), Statistic and Parameter.(1.2)		
13.		Data Visualization and Interpretation : Graphical summaries - Histogram – Equal and Unequal Widths (1.3) Hands on Session-Data Visualization with Matplotlib and Seaborn		
14.		Visualizing Data: Box Plots (1.3) Hands on Session-Data Visualization with Matplotlib and Seaborn		
15.		Tutorial 1: Sample Exercise Problem Solving		
16.		Visualizing Data: Line Plots, Hands on Session-Data Visualization with Matplotlib and Seaborn		
17.		Visualizing Data: Bar Charts, Scatter plots – Handout 5, Hands on Session-Data Visualization with Matplotlib and Seaborn		

18.		Heat Maps-Handout 6 Hands on Session-Data		
		Visualization with Matplotlib and Seaborn	ļ	
19.		Good vs. Bad Visualization.(Handout 7)	ļ	
20.		Tutorial 1: Sample Exercise Problem Solving	ļ	
21.		Case Study : Real world Application		
22.		Applications of Probability Distributions and Principles		
		of Point Estimation: Introduction		
23.		Chebysnev's inequality (2.4),		
24.		Linear Functions of Random variables(2.5)		
25.	Unit. 2	Independent Random Variables		
26	Umt. 2			
20.	Applications of	Normal Probability Plots(4.10)		
27.	Probability	Normal Probability Plot (4.10) Hands on session		
28.	Distributions and Principles	Introduction Generation of Random Variates		
29.	of Point Estimation	Techniques for Generation of Random Variates		
30.		Generation of Random Variates with applications		
31.	T1: Chapter 2	Sampling Distribution Hands on Session		
32.	2.4 -2.5	The Central Limit Theorem	51	12
33.	Chapter 4	The Central Limit Theorem and Applications, (4.11)	51	43
	4.1 – 4.3,	Hands on session	ļ	
34.	4.5,	Principles of Point Estimation:Introduction	ļ	
35.	4.9 – 4.11	Mean Squared Error for Bernoulli, Binomial,	ļ	
36.		Mean Squared Error for Poission, Normal	ļ	
37.		Maximum Likelihood Estimate for Bernoulli, Binomial		
38.		Maximum Likelihood Estimate for Poission, Normal		
39.		Tutorial 2: Sample Exercise Problem Solving		
40.		Tutorial 2: Sample Exercise Problem Solving		
41.		Case Study : Real world Application		
42.		Revision Unit-1		
43.		Revision Unit-2		
44.	Unit: 3	Confidence Intervals: Introduction,		
45.		Interval estimates foe Mean of Large and Small Samples,		
46.	Confidence	Probability versus Confidence		
47.	Intervals and	Determining the Sample Size Needed for a Confidence		
	Hypothesis	Interval of Specified Width		
48.	Tosting	Interval estimates for proportion of large samples. (5.2)	75	63
49.	1 Coulig	Interval estimates for proportion of Small Samples.(5.3)		
50.		Student's t Distribution		
	Chapter 5	Hands on session		
51.	5.1-5.4,5.7 T1: Chapter 6	Confidence Intervals for the Difference between Two Means for large samples (5.4)		
	-	wicans for large samples(3.4),	1	

52.	6.1 - 6.3, 6.5,	Confidence Interval estimates for paired data.(5.7)		
53.		Factors affecting Margin of Error.(Handout 11)		
		Hands on session		
54.		Hypothesis Testing: Introduction (6.1)		
55.		Hypothesis testing for a Population Mean (6.1)		
56.		Drawing conclusions from the results of Hypothesis		
		tests(6.2)		
57.		Relationship between Hypothesis Tests and Confidence		
		Intervals		
58.		Population proportion of Large samples (6.3)		
59.		Population proportion of Small samples		
60.		Large - Sample tests for Difference between two means		
		(6.5)		
61.		Hands on session :Hypothesis Testing		
62.		Tutorial 3: Sample Exercise Problem Solving		
63.		Case Study : Real world Application		
64.		Distribution Free Tests. (6.9)		
65.		Chi-squared Test.(6.10)		
66.		The Chi-Square Test for Homogeneity and for		
		Independence		
67.	Unit: 4	Fixed Level Testing (6.12)		
68.	Distribution	Critical Points and Rejection Regions		
69.	Free Tests and	Type I and Type II Errors (6.12)		
70.	Linear	Power of a lest. (6.13)		
71.	Regression	Factors affecting Power of a Test. (Handout 12)		
72.		Simple Linear Regression: Introduction	100	0.4
/3.	T1: Chapter 6	The Least squares Line (7.2)		84
74.	6.9, 6.10, 6.12	Predictions using regression models		
75.	T1: Chapter 6	Lincertainties in Regression Coefficients (7.3)		
70.	6.13	Checking Assumptions and transforming data (7.4)		
77.	T1: Chapter 7	The Multiple Regression Model		
70.	7.1 – 7.4	The Statistics s2 R2 and F		
80.		Hands on session on Linear regression contd.		
81.		Tutorial 4: Sample Exercise Problem Solving		
82.		Case Study : Real world Application		
83.		Revision Unit-3		
84.		Revision Unit-4		

Literature:

Book Type	Code	Title & Author	Publication Information		
			Edition	Publisher	Year
Text Book	T1	Statistics for Engineers and Scientists, William Navidi.	4 th	McGraw Hill Education, India	2013
Reference Book	T2	The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling, Raj Jain		Wiley	2008
Reference Book	Т3	Data Science From Scratch, Joel Grus	1 st	O'Reilly	2015
Reference Book	T4	Sampling- Design and Analysis, Sharon L. Lohr	2 nd	Cengage	2010
Reference Book	T5	Statistics for Engineers and Scientists, William Navidi.	3 rd	McGraw Hill Education, India	2010

Tools / Languages/Libraries Covered:

matpletlib seaborn Beautifuloup

UE22CS242A - WEB TECHNOLOGIES (4:0:0:4:4)

Course Information

Web Technologies course demonstrates an in-depth understanding of the technologies necessary for designing and developing a rich web application in an efficient way.

Course Outcomes:

At the end of the course, the student will be able to,

- 1. Understand basic web technologies like HTML, CSS and JavaScript
- 2. Achieve rich user experience by implementing HTML5 features and Asynchronous communication using AJAX and JQuery
- 3. Understand MERN stack layers (MongoDB, ExpressJS, ReactJS and NodeJS) and create rich User Interface using React JS
- 4. Integrate the UI with MongoDB database through NodeJS and create RESTful Web services using ExpressJS

Class Chapter			% of Portions Cov	
Class #	Title/Reference	Topics to be Covered	% of	Cumulative
#	Literature		Syllabus	%
1.		Introduction to Web Architecture and Web		
		protocols (HTTP Request Response Formats,		
		URLs)		
2.		Basic Mark-ups & syntax		
3.		HTML elements & attributes		
4.		Web Form 2.0 & Form Controls		
5.		HTML5 (New Tags, Inputs, Elements and		
		Controls)		
6.		CSS3.0-Styles and Style sheets		
7.		Selectors		
8.		Style properties		
9.	UNIT 1(14 hours)	Box Model and Positioning	25%	25%
10.		JavaScript Basics(Variables, Scope)	2370	2370
11.		JavaScript Basics: Functions, Hoisting		
12.		JavaScript Built-in Objects		
13.		JavaScript Objects		
14.		Prototypal Inheritance		
15.		DOM Manipulations		
16.		DOM Manipulations Examples		
17.		Events		
18.		Event Handling in JavaScript		
19.		Event Handling Examples		
20.		Assignment_1		
21.				
22.		HTML5 (APIs),		
23.	UNIT 2(14 hours)	Audio, Video and Progress	25%	50%
24.	01111 2(14 10013)	Audio, Video and Progress		5070
25.		Canvas, SVG		

of Credits: 4

of Hours: 63

26.		File api, geolocation,		
27.		web workers		
28.		JQuery (Introduction, Handling events)		
29.		JQuery (Introduction, Handling events)		
30.		Callbacks & Promises		
31.		Callbacks & Promises		
32.		Single Page Application		
33.		XML Vs JSON		
34.		Asynchronous Communication- XHR (properties		
		and methods)		
35.		Asynchronous Communication- XHR (properties		
		and methods)		
36.		\$.ajax,\$.get,\$.post, \$load		
37.		Fetch API		
38.		ReactJS - MERN Introduction		
39.		React Classes and Components		
40.		React Component Styling		
41.				
42.		Assignment -2		
		ISA 1 and ISA 2		
43.		Complex components		
44.		Properties, States and Context		
45.		Component lifecycle methods		
46.		Stateless components		
47.		Refs		
48.		Keys		
49.	-	Event Handling		
50.		React Hook		
51.		React Hook		
52.		Understanding Node JS Architecture		
53.	UNIT 3(14 hours)	Set up Node JS app	25%	75%
54.		Node Modules		
55.		Node Modules		
56.		Buffers.		
57.		Streams,		
58.		File system		
59.		HTTP Module		
60.		Handling HTTP Requests - 2		
61.		Programming Examples		
62.				
63.		Assignment -3		
64.		Mongo DB- Documents, Collections		
65.		Mongo DB- Documents, Collections		
66.		Reading to DB		
67.		Writing to DB		
68.	UNIT 4(14 hours)	MongoDB Node JS Driver		4000/
69.	(Running a react application on NodeIS (Hands-on)	25%	100%
70		React Router		
71		ExpressIS - Introduction to Web services		
72		REST API's		
73.		Express Framework Overview		

74.	Express Framework Overview				
75.	Routing				
76.	URL Binding				
77.	Error Handling				
78.	Express Middleware				
79.	Form Data				
80.	File Upload				
81.	Programming Examples				
82.	Programming Examples				
83.	Assignment_1				
84.					
ISA 3 and ISA 4					

Tools / Languages: HTML, CSS, JavaScript and MERN Technologies

Books:

Book Type	Codo	Title & Author	Publication Information			
book Type	Coue		Edition	Publisher	Year	
Text Book	T1	Learning PHP, MySQL & JavaScript, 5th Edition. by Robin Nixon. May 2018, O'Reilly Media, Inc. ISBN: 9781491978917	2 nd	Wiley Publishing	2018	
Text Book	T2	Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node by Vasan Subramanian. March 2017, Apress	1 st	O'Reilly	2017	
Reference Book	R1	Beginning Node.js, Express & MongoDB Development by Greg Lim, July 2019	1^{st}	McGraw Hill	2019	
Reference Book	R2	Learning React, Functional Web Development with React and Redux By Alex Banks and Eve Porcello, May 2017, O'Reilly Media	1^{st}	O'Reilly Media	2017	

Course Plan Summary	Hours	Classes
Units Distribution	57	76
Assignments (4 Nos.)	6	8
Total	63	84

PES UNIVERSITY, Bangalore (Established under Karnataka Act No. 16 of 2013)

(Established under Karnataka Act No. 16 of 2013) Department of Computer Science & Engineering

UE22CS243A: Automata Formal Language and Logic Course Information

Sessions	Unit	Tonic	Chapter	% Coverage	
	Unit	Τορις	& Section	Unit	Total
1		Mathematical Preliminaries	T1-1.1		
2		Basic Notations	T1-1.2		
3		Deterministic Finite Acceptors	T1-2.1		
4					
5					
6					
7					
8		Non -Deterministic Finite Acceptors, λ -NFA	T1-2.2		
9	1		m 4 0 0		
10	-	Equivalence of Deterministic and Non-deterministic Finite	11-2.3	25	25
11		Acceptors	T1 2 Λ		
12		Reduction of the number of states in Finite Automata	11-2.4		
13		(Minimization of DFA)			
15					
16		Regular Expressions	T1-3.1		
17					
18		Connection between Regular Expressions Regular Languages	T1-3.2		
19		Regular Grammars	T 1 2 2		
20			11-3.3		
21		Properties of Regular Languages	T1-4142		
22			11-7.1, 7.2		
23					
24		Pumping Lemma and identifying Non–Regular Languages	T1-4.3		
25		- amping Lonning and reprint ing them the game Languages	12 110		
26					
27		Context Free Grammars	11-5.1		
28					
29					
30	2			25	50
32		Formal Definitions of Pushdown Automata	T1-7 1	20	50
33			11 /.1		
34		Deterministic Pushdown Automata	T1-7.3		
35					
36			l l		
37		Non-Deterministic Pushdown Automata	T1-7.1		
38					
39		Unit-1 revision			
40		Unit-1 revision			
41		Unit-2 revision			

PES UNIVERSITY, Bangalore (Established under Karnataka Act No. 16 of 2013)

(Established under Karnataka Act No. 16 of 2013) Department of Computer Science & Engineering

42		Unit-2 revision			
		ISA-1	·		
43		Parsing and Ambiguity	T1-5.2		
44		Methods for Transforming Grammars	T1-6.1		
45					
46		Two important Normal Forms	T1 6 2		
47			11-0.2		
48		A Membership Algorithm for Context–Free Languages	T1-6.3		
49					
50		Pushdown down Automata and Context Free Languages	T1-72		
51			11 /.2		
52	3	Properties of Context–Free Languages	T1-8.2		
53	5			25	75
54		Pumping Lemma for Context–Free Languages	T1-8.1		
55					
56			T 1 0 1		
57		The Standard Turing Machine	11-9.1		
58	-				
59		Combining Turing Machine for Complicated Teals			
61			T1-9.2		
62		Turing Thesis	T1-93		
63		Recursive and Recursively Enumerable Languages	T1-111		
64					
65		Context Sensitive Grammar and Languages	T1-11.3		
66		The Chomsky Hierarchy	T1-11.4		
67			T1-12.1,		
68		Some Problems that Cannot be solved by Turing Machine, PCP	12.3		
69		Propositional Logic: A very simple logic	T2-7.4		
70		Syntax	T2-7.4.1		
71		Semantics	T2-7.4.2		
72		A simple knowledge Base	T2-7.4.3		
73	1	A simple Inference procedure	T2-7.4.4		
74	4	Inferences and Proofs	T2-7.5.1	25	100
75					
76		Proof by resolution	T2-7.5.2		
77		First Order Logic: Syntax and Semantics of First order logic	T2-8.2		
/8			T T 0 2 2		
/9		Numbers, Sets and Lists	12-8.3.3		
00		Example - The electronic circuit Domain	12-0.4.2		
01 Q2		Unit-3 revision	-		
82		Unit-4 revision	-		
84	1	Init-4 revision	1		
		ISA-2	1	1	

PES UNIVERSITY, Bangalore

(Established under Karnataka Act No. 16 of 2013) Department of Computer Science & Engineering

Text Book(s):

- 1. "An Introduction to Formal Languages and Automata", Peter Linz, Jones and Bartlett, New Delhi, India, 5th Edition, 2011.
- 2. Artificial Intelligence A Modern Approach", Stuart Russell and Peter Norvig, Pearson, 3rd Edition (Paperback),2016

References:

- 1. "Theory of Computation", Michael Sipser, Cengage Learning, New Delhi, India, 2008.
- **2.** "Introduction to Automata Theory, Languages, and Computation", John E Hopcroft, Rajeev Motwani, Jeffrey D Ullman, Pearson Education, New Delhi, India, 3rd Edition, 2009.
- **3.** "Theory of Computation: A Problem–Solving Approach", Kavi Mahesh, Wiley India, New Delhi, 2012.